Recognition of base-pairing by DNA polymerases during nucleotide incorporation: the properties of the mutagenic nucleotide dPTP alphaS.

نویسندگان

  • Victoria H Harris
  • Clifford L Smith
  • W Jonathan Cummins
  • Alan L Hamilton
  • David P Hornby
  • David M Williams
چکیده

The highly mutagenic nucleoside dP (6-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-2-one) is a bicyclic analogue of N4-methoxy-2'-deoxycytidine. It exists as a mixture of its imino and amino tautomers in solution with a ratio of about 10:1 based on its tautomeric constant. The bicyclic nature of the heterocycle P restrains the amino substituent in an anti conformation and permits effective Watson-Crick base-pairing using either tautomer. The specificity of incorporation of dP by the 3'-5'-exonuclease-free Klenow fragment of DNA polymerase I (exo-free Klenow) has been studied using the 5'-(1-thio)triphosphate dPTP alphaS in combination with phosphorothioate-specific sequencing of the DNA products. The method provides a convenient qualitative assay for studying nucleotide incorporation and reveals for the first time a potential role for the minor tautomeric forms of the natural DNA bases in base misinsertion (substitution mutagenesis) during replication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implications for damage recognition during Dpo4-mediated mutagenic bypass of m1G and m3C lesions.

DNA is susceptible to alkylation damage by a number of environmental agents that modify the Watson-Crick edge of the bases. Such lesions, if not repaired, may be bypassed by Y-family DNA polymerases. The bypass polymerase Dpo4 is strongly inhibited by 1-methylguanine (m1G) and 3-methylcytosine (m3C), with nucleotide incorporation opposite these lesions being predominantly mutagenic. Further, ex...

متن کامل

Diversity of Endonuclease V: From DNA Repair to RNA Editing

Deamination of adenine occurs in DNA, RNA, and their precursors via a hydrolytic reaction and a nitrosative reaction. The generated deaminated products are potentially mutagenic because of their structural similarity to natural bases, which in turn leads to erroneous nucleotide pairing and subsequent disruption of cellular metabolism. Incorporation of deaminated precursors into the nucleic acid...

متن کامل

Mutagenicity associated with O6-methylguanine-DNA damage and mechanism of nucleotide flipping by AGT during repair.

Methylated guanine damage at O6 position (i.e. O6MG) is dangerous due to its mutagenic and carcinogenic character that often gives rise to G:C-A:T mutation. However, the reason for this mutagenicity is not known precisely and has been a matter of controversy. Further, although it is known that O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6MG paired with cytosine in DNA, the complete mech...

متن کامل

Single Nucleotide Polymorphisms and Association Studies: A Few Critical Points

Uncovering DNA sequence variations that correlate with phenotypic changes, e.g., diseases, is the aim of sequence variation studies. Common types sequence variations are Single nucleotide polymorphism (SNP, pronounced snip).SNPs are the third-generation molecular marker. SNP represents a DNA sequence variant of a single base pair with the minor allele occurring in more than 1% of a given popula...

متن کامل

Nucleotide binding interactions modulate dNTP selectivity and facilitate 8-oxo-dGTP incorporation by DNA polymerase lambda

8-Oxo-7,8,-dihydro-2'-deoxyguanosine triphosphate (8-oxo-dGTP) is a major product of oxidative damage in the nucleotide pool. It is capable of mispairing with adenosine (dA), resulting in futile, mutagenic cycles of base excision repair. Therefore, it is critical that DNA polymerases discriminate against 8-oxo-dGTP at the insertion step. Because of its roles in oxidative DNA damage repair and n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 1 12  شماره 

صفحات  -

تاریخ انتشار 2003